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ABSTRACT: Reflection high-energy electron diffraction
(RHEED) is a powerful tool in molecular beam epitaxy (MBE),
but RHEED images are often difficult to interpret, requiring
experienced operators. We present an approach for automated
surveillance of GaAs substrate deoxidation in MBE reactors using
deep-learning-based RHEED image-sequence classification. Our
approach consists of an nonsupervised autoencoder (AE) for
feature extraction, combined with a supervised convolutional
classifier network. We demonstrate that our lightweight network
model can accurately identify the exact deoxidation moment.
Furthermore, we show that the approach is very robust and allows
accurate deoxidation detection for months without requiring retraining. The main advantage of the approach is that it can be applied
to raw RHEED images without requiring further information such as the rotation angle, temperature, etc.

1. INTRODUCTION
Reflection high-energy electron diffraction (RHEED) is a
widely used in situ control method in molecular beam epitaxy
(MBE).1−4 RHEED diffraction patterns provide information
about the crystal surface with atomic resolution, and as the
ultrahigh vacuum in typical growth chambers allows an easy
integration of electron beam systems in MBEs, RHEED has
become a standard in situ characterization instrument in MBE,
enabling unprecedented accuracy in monitoring the crystal
growth. RHEED is highly sensitive to several key MBE
parameters such as the growth rate, the crystal structure, the
lattice parameter and strain, etc.5−9 However, RHEED images
can be difficult to interpret, since the diffraction patterns
produce information in the Fourier space. Furthermore, the
actual recorded patterns are very sensitive to calibration, and
often also dynamic variations in the patterns over several time
scales contain valuable information, rendering their analysis
even more challenging. Real-time exploitation of RHEED data
is therefore often limited to easily accessible information such
as the deposition rate. Sophisticated analysis is usually done a
posteriori, on recorded RHEED images or videos. Due to the
complexity of the task, RHEED interpretation usually requires
experienced operators, possessing years of machine-specific
training.
A common application of RHEED is the monitoring of the

native oxide removal from commercial substrates prior to
crystal growth. Surface oxidation of a few nanometers due to
exposure to oxygen is unavoidable during transport of epitaxial
substrates, which renders their surface noncrystalline. This
oxide needs to be removed before any epitaxial material

deposition, which is usually done by heating. In the case of
gallium arsenide (GaAs), the substrate is slowly heated to
around 610 °C, while stabilizing the crystal with a constant
arsenic flux of around 1.2 × 10−5 Torr, to avoid As
evaporation.10 Once the oxide is removed, in order to avoid
damaging of the crystal, further temperature ramping needs to
be stopped; usually the temperature is in fact decreased. To
detect the deoxidation, the MBE operator supervises the
RHEED image during temperature increase, and once the
diffraction pattern of a crystalline surface starts to form, the
operator manually ends the heating procedure. Not only is the
constant presence of the operator required but also due to its
manual character the deoxidation procedure is error-prone.
Automatic detection of the deoxidation is challenging, first
because RHEED patterns are often weak since the raw
substrate surfaces are not atomically flat, and second because
the RHEED image contrast is dependent on some parameters
such as filament current or electron beam angle and hence is
not exactly constant in each run. Finally, the substrate is
usually lying on a rotating sample holder; hence, the RHEED
pattern constantly changes.
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Methods from artificial intelligence, including deep learning,
are being increasingly applied to nano and materials
science.11−15 Recently, first attempts have been reported to
use statistical methods and machine learning for RHEED
image interpretation.16−20 Inspired by these pioneering works,
we propose to use a deep-learning (DL) approach for
classification of oxidized and deoxidized substrates via their
RHEED patterns, to resolve the problems described above. As
mentioned above, due to the sample rotation, the RHEED
signal can confidently indicate deoxidation only during short
moments, when the electron beam is aligned with a lattice
direction of the crystal. In contrast to recent propositions to
use DL with RHEED for surface reconstruction identifica-
tion,19,20 we therefore propose a model which analyzes
sequences of RHEED patterns (i.e., videos), instead of single
images. To this end, we propose a two-stage deep learning
model. The first stage is an autoencoder, which compresses
each full-resolution RHEED image into a low-dimensional
latent vector. The second stage subsequently determines the
oxidation state for a sequence of such latent vectors, hence for
the compressed representation of a short RHEED video
sequence. We provide a detailed analysis of the required latent
and sequence lengths and demonstrate the accuracy of the
model as well as its stability over a period of more than 6
months between training data sampling and testing. Finally, we
provide online the data and codes as well as pretrained models
to reproduce our results.21

2. RESULTS AND DISCUSSION
2.1. Substrate Deoxidation Classification Problem.

On commercial substrates, a native oxide layer of a few
nanometers encapsulates the crystal surface. The RHEED
electron beam does not penetrate through this oxide and hence

does not reach the crystalline lattice (in our case GaAs). The
electrons are thus not diffracted but scattered. Independent of
the sample rotation angle, the RHEED signal on the
fluorescent screen is diffuse and no diffraction pattern occurs
(cf. Figure 1c). On the other hand, without an oxide layer the
RHEED electrons are diffracted by the atomic lattice of the
now crystalline surface. However, the transition from oxidized
to deoxidized is not instantaneous and during the deoxidation
the classification is often difficult. Furthermore, due to the
rotation of the sample, the diffraction pattern continuously
changes and, especially during the deoxidation process, the
pattern arises not similarly clearly for different rotation angles.
Our operator classifies the surface as deoxidized when a clear
diffraction pattern occurs repeatedly during at least one full
rotation cycle of the substrate.
The general problem is schematically depicted in Figure 1a.

Our goal is to precisely determine the moment of full oxide
removal from a GaAs substrate by monitoring the RHEED
pattern during the deoxidation process.
However, as mentioned above, the image dynamics due to

the constant rotation of the sample is a challenge for an
algorithmic evaluation. Furthermore, disordered bright spots
can occur also from oxidized surfaces (see Figure 1c).
Therefore, an algorithmic classification is not entirely trivial.
By feeding short video sequences of several consecutive
RHEED images to a classification neural network, we aim at
determining the oxidation state of the substrate surface, in
order to reduce the necessity of human supervision of the
substrate cleaning process.
2.2. Data Set. To train a neural network on deoxidation

reconnaissance, we generate a training data set by capturing
RHEED videos before and after the oxide removal procedure.
The images are collected in real time at 24 frames per second,

Figure 1. Deoxidation detection problem. (a) Short sequences of the RHEED video obtained from a rotating GaAs substrate are analyzed by a
deep learning neural network (NN) model, to determine if the substrate deoxidation process has terminated. (b) The DL model consists of two
stages. An autoencoder encodes every single RHEED image into a latent vector of dimension N with the goal of reconstructing the original image.
The latent vector thus contains all relevant features of the RHEED image. Sequences of L latent vectors are then used for classification of
deoxidized surfaces. The classifier network thus analyzes short RHEED videos covering a certain rotation angle. (c) Example sequence of 10
consecutive raw RHEED images obtained from an oxidized GaAs surface. (d) Example sequence of 10 consecutive raw RHEED images obtained
after deoxidation from the same GaAs surface as shown in (c).
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while the sample rotates with 12 rounds per minute; hence, we
capture 120 images per full rotation. The RHEED video is
thereby captured image by image, using a CMOS camera
(Allied Vision Manta G319B) with 4 × 4 pixel binning,
resulting in raw images of 416 × 444 pixels at 12 bit grayscale
intensity resolution. Those images are simply converted to 8
bit format and scaled to 100 × 100 pixels. In total we collected
videos containing a total of 7644 RHEED images from five
substrate oxide removal procedures within a period of a few
days. 3110 of these images correspond to deoxidized surfaces;
the rest are images from GaAs surfaces which were covered by
a native oxide layer. GaAs surface oxides decompose at
temperatures of around 580−630° C.24 On our commercial
substrates we typically observe deoxidation at around 610−630
°C. Substrate temperatures at which deoxidized videos were
taken are slightly lower, around 550−600 °C (videos were
recorded during ramping of the temperature). Deoxidized
images where taken directly after oxide removal, at around 610
°C. During and after deoxidation, the As4 pressure for surface
stabilization is held at 1.2 × 10−5 Torr.
We use 20% of the data set for validation and the remaining

80% for training. In addition to the oxidized and deoxidized
image sets, we also captured images during the full deoxidation
procedure. These are not used during training and serve for
testing of the algorithm. RHEED images during a further
deoxidation were captured around 6 months after generation
of the initial data set. These serve for an assessment of the
long-term stability of the classification.
2.3. RHEED Sequence Classifier Network Model. Our

deoxidation monitor deep-learning model is composed of two
stages, as depicted schematically in Figure 1b. The first stage is
a feature extractor network, compressing the large RHEED
images into compact latent vectors. This is done separately
image by image. The second stage is the actual classification
network. Its inputs are sequences of latent vectors,
corresponding to short RHEED videos. We implemented the
models in Python using Keras with TensorFlow as the back
end.25,26 For preprocessing and data management we
furthermore use the packages openCV, Scikit-image, Scikit-
learn, and hdf5/h5py.27−30

2.3.1. Image Feature Extraction. As a feature extractor we
use a deep convolutional autoencoder (AE) neural network,
which has been reported to offer slightly superior compression
quality compared to other dimensionality reduction methods
such as principal component analysis (PCA), especially at high
compression rates. We note, however, that AEs require in
general more computational resources. Thus, if computation
speed is crucial, PCA could be used instead, for situations
where only a moderate reduction in encoding performance is
expected.31

The model details of our AE are shown in the top row of
Figure 2. A RHEED image goes through the encoder stage,
being compressed into a latent vector of dimensionality N. For
training, the latent vector is fed into a decoder stage, which is
an exact mirror of the encoder, except for replacing
convolution layers by transpose convolutions and applying
zero padding if required, to maintain correct image dimension.
Through nonsupervised training, the autoencoder learns to
reconstruct the unlabeled input images from their learned
latent vector representation.
Please note that we optimized the network for low

parameter number, in order to have a computationally efficient
model. To this end we do not double the number of channels
once a depth of 128 filters is reached. We also compared the
architecture with a ResNet,32,33 replacing the single con-
volutions by residual convolutional blocks each of which
employing a sequence of three convolutions. The performance
is similar and offers no advantage in deoxidation classification.
Please note that this applies to the specific problem discussed
here; for other problems the slightly improved accuracy offered
by a ResNet may very well be beneficial.

2.3.2. Sequence Classification CNN. The second stage of
our model is the actual classification network. Because the
MBE sample is rotating, the RHEED images are constantly
varying. Especially during deoxidation, the surface is not
atomically flat and signatures of oxide removal often occur in
the RHEED images only when the electron beam is aligned
with the crystal lattice of the substrate. For a high accuracy we
therefore classify sequences of RHEED images: i.e., short videos.
To do so, we compress the RHEED video image by image

Figure 2. Detailed network architecture. In a CNN autoencoder (AE, top), each RHEED image is first compressed through an convolutional
encoder into a 1D latent vector of length N. Training target of the AE is reconstruction of the original image from the latent vector (through the
decoder stage, only used during training). The second stage of the model is a classifier CNN network (bottom right), taking as input a sequence of
L latent vectors, corresponding to a series of RHEED images. These L latent vectors are stacked and passed into a CNN for classification into two
classes: oxidized and deoxidized. All convolutions are followed by batch normalization (BN)22 and ReLU activation. For descriptions of the
different network layers we refer the interested reader to relevant literature.23
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using the trained AE. Using the results, we then create
sequences of L consecutive latent vectors. These sequences are
arranged as 2D arrays of size (L, N) and are fed into a 2D
convolutional classifier network with two output classes, one
for the oxidized and the second for deoxidized state of the
surface. The details of the network are shown in the bottom
right of Figure 2. It is trained in a supervised manner of the
data set, with the goal of predicting the correct surface state
from a sequence of compressed RHEED images.
2.4. Results. 2.4.1. Autoencoder Reconstruction Quality.

For the tuning of the autoencoder architecture we qualitatively
tested AE layouts with varying numbers of layers and
convolutional kernels by compressing and reconstructing
random RHEED images that were not used for training.
Once a layout was found that accurately reproduced the visual
appearance of our RHEED images, we tested the reconstruc-
tion quality via peak signal-to-noise ratio (PSNR), where the
original image is used as the signal and the difference between
original and reconstructed image is used as noise. We obtained
the best PSNR for N = 70 with a value of around 90; no further
improvement was observed for larger latent dimensions.

2.4.2. Classification Accuracy. We test the classification
accuracy of the full two-stage model (AE + classifier) with
different values for the sequence length and fixed latent size N
= 50, as well as for varying latent dimensions while fixing the
sequence length L = 15. We find that the sequence length L is
indeed a crucial parameter. Single-image classification basically
fails. Sequences of at least L = 5 images are required, to drop
the error rates well below 1%, which can be seen in Figure 3a.
Concerning the latent size, we require at least a compression
dimensionality of N = 10 in order to get error rates well below
1%; increasing latent dimension further improves the accuracy
only marginally. This is shown in Figure 3b.
Subsequently we test whether the network is capable of

determining the exact moment of deoxidation on a set of
images captured during the entire deoxidation procedure. First
we fix the latent size to N = 50 and increase the sequence
length successively from L = 1 to L = 15 (Figure 4, top row).
In agreement with the former test (Figure 3a), we find that
starting from sequence lengths of L = 5 the network works
accurately and is essentially error-free. It detects the precise
moment of deoxidation with an agreement of a few seconds
compared to the estimation of the human operator. We then
fix the sequence length to L = 15 and vary the latent dimension
between N = 1 and N = 70 (Figure 4, bottom row). For latent
vectors of dimension N = 10 or larger, we find again quasi-
error-free classification and precise determination of the
deoxidation moment.
We conclude that the smallest data size for accurate

operation is a latent dimension of N = 10 and a sequence
length of L = 5. At a video rate of 120 images per full rotation
of the substrate holder, this sequence length (L = 5)
corresponds to a rotation angle of 15° being concurrently
processed by the classifier network.

2.4.3. Temporal Stability of the Classification Accuracy.
An MBE instrument is a highly complex apparatus, housing
many parts that have a potential impact on the long-term
stability of the RHEED precision. To name a few, multiple
pumps are required to maintain an ultrahigh vacuum, hot
source chambers are distributed around the chamber, and
mechanical stress is applied to the sample holder. It is not only
constantly rotating but also repeatedly heated and cooled by
temperature differences of many hundreds of degrees kelvin.

Furthermore, frequent (re)alignment of the RHEED source
and camera also have an impact on the reproducibility of the
diffraction patterns. In addition to all these mechanical
perturbations, it is very hard to avoid deposition of the source
material on the RHEED screen, slowly altering the diffraction
images during an epitaxy campaign. In consequence, a constant
RHEED image quality can usually not be guaranteed over a
long term.
Deep learning being a data-based technique, the main

advantage is generally a high robustness against noise and
perturbations, provided that the training data are sufficiently
rich.34 We therefore expect our approach to deliver reliable
classification results over significant time periods. In order to
assess whether our approach can provide accurate deoxidation
detection over durations of typical crystal growth campaigns,
we recorded a deoxidation RHEED video around 6 months
after the acquisition of the training data.
During the 6 months between generation of the training data

and this test, around 40 epitaxies, equivalent to roughly 200 h
of growth, have been performed on the machine. The most
altered component in the system is in fact the RHEED screen,
which suffers from metalization over time, implying a
considerable deterioration of the RHEED image quality. In
fact, our test on 6 months newer data was motivated by the
observation of a degradation of the RHEED screen, especially

Figure 3. Prediction fidelity vs sequence length and latent size. Mean
absolute error (MAE) on the test set for network models working
with increasing sequence length and latent dimension. (a) MAE as a
function of sequence length L. The latent size is fixed to N = 50. The
actual classification error of sequences L ≥ 5 is zero. (b) MAE as a
function of latent space dimensionality N. The used sequence length
is L = 15. The actual classification error with latent size N ≥ 10 is
virtually zero.
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in the upper third of the diffraction images (see also Figure
1c,d).
A comparison of “original” and “six months newer”

deoxidized GaAs RHEED images under (1,1,0) incidence is
shown in Figure 5a,c. We find that the newer data is not only
visually deteriorated as a result of screen metallization (c.f.
upper regions of the images) but also the newer recordings
show diffraction patterns which are shifted with respect to the
original training data. The shift is probably due to repeated
alignment corrections on the camera and the electron beam
positions.
Figure 5b,d shows also the autoencoder reconstructions of

the (1,1,0) diffraction patterns respectively from the training
set and 6 months after. Interestingly, in the reconstruction of
the 6 months newer image, the diffraction spots are shifted
back to the positions at which they occurred at the time when
the original data set was captured. It appears that the
convolutional encoder stage correctly identifies the information
about diffraction in the image. The decoder, on the other hand,
has learned its spatial reconstruction only from the training set;
therefore, it places the diffraction pattern according to the
original RHEED alignment. In fact, the classifier still works
correctly with shifted images. Since classification is done using
latent vectors and not with the direct image information, we
conclude that the relative diffraction spot/line positions are
correctly interpreted by the encoder also from shifted images
and mapped to the same latent variables as with the original
training data.
In Figure 5e we show the classification results for a full video

from a deoxidation run 6 months after network training. While
we observe a slightly reduced classification certainty regarding
the exact moment of deoxidation, also 6 months after initial
training data recording, the nonretrained neural network still
performs sufficiently well on the deoxidation detection. We
want to note that after training the pretrained network for a
few additional epochs on a small set of new images, the fidelity
of the network reaches the same confidence as observed in the
right-hand panels of Figure 4. In conclusion, convolutional
neural networks offer a remarkable robustness for data
characterization tasks that are susceptible to small perturba-

tions and noise. CNNs are thus particularly interesting for
long-term applications in real-world systems.

2.4.4. Network Classification Speed. Deep-learning frame-
works such as TensorFlow/Keras are highly optimized for
batch processing many samples in parallel. On prerecorded
data, where our models can run parallel data processing, they
are therefore extremely efficient, requiring only a few
milliseconds of processing time per sequence. In an in situ
operation, however, data needs to be processed “on the fly”,
hence image-by-image (or at least one video sequence at a
time). For such sequential operation, TensorFlow is not
optimized. Processing of a single sequence with 15 images by
our autoencoder with subsequent classification takes in sum
220 ms. This is not enough for full real-time analysis of a 24
frames per second video stream as we receive from our
RHEED camera. However, the time scales of MBE crystal
growth dynamics are not faster than in the order of tens of
seconds; thus, classification at full video speed is in fact not
required. For the relevant time scales, our method is largely fast
enough to practically perform real-time in situ control.
Furthermore, the evaluation speed could probably be increased
with some further optimization efforts. Finally, we want to note
that our network models are compact enough to be used on
conventional CPUs (central processing units). The full
processing of a single 15-image sequence takes 220 ms on
our NVIDIA 3070Ti GPU, against 260 ms on a 10th
generation Intel i7 CPU. Hence, no additional hardware
such as graphics processing units is necessary in an MBE
control computer.

3. CONCLUSIONS
In conclusion, we presented a deep-learning model based on a
2D convolutional neural network to detect the surface
oxidation state of GaAs substrates from raw RHEED image
sequences, as typically available in molecular beam epitaxy.
Our model consists of a first autoencoder neural network,
which learns to compress individual RHEED images to a low-
dimensional latent space. Sequences of consecutive, com-
pressed RHEED images are then classified for their surface
oxidation state through a second convolutional network. We

Figure 4. Detection accuracy of deoxidation moment. The impact of the sequence length as well as of latent vector dimension is tested on a video
captured during a full deoxidation. The video consists of 31819 RHEED images, the last 6,000 of which are shown. Deoxidation occurs around
1800 frames before the sequence end (indicated by a red dotted line). The RHEED video is captured with 24 frames per second. Top row: with an
increase in sequence length L, the latent dimension of the autoencoder is fixed to N = 50. Bottom row: with an increase in latent dimension N, the
sequence length of the classifier is fixed to L = 15.
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presented a systematic analysis of classification performance as
a function of used compression ratio as well as RHEED video
sequence length. We demonstrated that the model accurately
identifies the exact surface deoxidation moment and that the
performance is robust during at least 6 months of MBE
operation without requiring retraining.
While our specific, trained network will of course work only

with the MBE setup and RHEED screen used for our training
data generation, a generalization to other growth chambers can
simply be done by training the same models on the relevant
data. Video recording is straightforward; we demonstrated that
the approach works well with data from only five deoxidation
recordings, and we proved it to function reliably during at least
several months. In consequence, our approach is very
appealing thanks to its simplicity and low computational

cost. Without requiring additional hardware it can be easily set
up in any RHEED-equipped MBE instrument.
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